

Organic Fingerprinting of Groundwater to Determine Surface Water Origins

Professor Becky Lunn

Dr Mark Stillings, Prof Zoe Shipton, Dr Richard Lord, Dr Stella Pytharouli, Dr Marianna Kinali

Dr Sally Thompson (RWM)

LArge Scale Monitoring (LASMO)

Aims

University of Strathclvde

- Test monitoring systems, technologies or methods
- Collect monitoring data in order to identify baseline GW conditions and disturbing events.

Groundwater Chemical background

Dissolved organics

Micro-seismic Monitoring

http://www.grimsel.com/gts-phase-vi/lasmo/lasmo-introduction

Strathclyde Contributions

- 1) Monitoring Background Groundwater chemistry
- 2) Scrutinise and develop hydrogeological site investigation techniques.
- 3) Examine whether surface load changes (due to lake drainage as a glacial analogue) affect groundwater flow and geochemistry.

Developed 2 new site investigation techniques:

- Organic fingerprinting
- Baseline (nano-) microseismic event detection to
 - map subsurface fractures
 - Draw implications for glacial loading

Deriving a flow model for the GTS

Can we distinguish components from the different surface water origins at depth?

- Glacial meltwater
- Lake water
- Rainwater/snow

What can distinguish groundwater

sources?

University of Strathclyde Engineering

Traditional methods: GTS groundwater is meteoric and > 65 years old

What can distinguish groundwater

sources?

<u>Traditional methods:</u> GTS groundwater is meteoric and > 65 years old

Biomarkers?

- Naturally Occurring
 - Passive
- Spatial Discrimination
 - Water soluble
 - Detectable
 - Long lasting

Concept – based on forensics University of Strathclyde T a. Water b. $\rightarrow t$ \uparrow a. 1 a. b. b. Soil $\rightarrow 1$ $\rightarrow t$ \uparrow Lake Water **a**. Abundance 329 % 368 129 90 73 $\rightarrow t$ 80 70 60 M^{+} 57 50 95 458 353 40 30 20 213 203 443 275 301 10 387 417 400 m/z

Detailed Organic Fingerprinting

University of Strathclyde Engineering

http://www.sepsolve.com/overview-of-gcgc/

Organic Fingerprints

Groundwater

University of Strathclyde Engineering

Organic Fingerprints

Lake Water

Implications for Groundwater Flow Model

- Lake and soil sources are different in composition
- Clear lake component in 3 groundwater sites
- Groundwater derives from lake, and two soil types
- Neighbouring fractures that cross the same borehole are extremely poorly connected (if at all)
- first ever use of organic fingerprinting as a groundwater tracing technique

Current Project:

£197k – RWM 'Organic fingerprinting of groundwater to determine surface water origins' (Jan 2020 - 2022)

Test site: Mont Terri, Switzerland

Exploring longevity, applicability to different clay sites, molecule decay etc.

Advanced Image Processing Techniques

- Manual method: A full working day to produce approx. 3-4% of full channel image
- Automatic Artificial Intelligence-based method: Around 20 mins to produce 100% of 8 layers

University

Strathclyde Engineering

Develop similar AI-based inspection techniques for waste packages, cables etc?

Diagnostic Life-time Asset Management Tools

University of Strathclyde Engineering

Cable Management

Combines monitoring measurements, data driven models and physics-based cable aging models to provide an overall trended **health index (HI)**

Integration into **engineering decision support systems** and cable asset management strategies

RWM - Public and operational assurance

Asset Management for Storage, Packaging, surface and subsurface GDF infrastructure?20

Smart Cements for Crack / Leakage Detection

Remotely deployable, combined monitoring & maintenance for concrete

Continuous monitoring to detect cracks, moisture ingress, chloride content etc

RWM – Smart non-invasive monitoring of cement-based assets?

Crack sealing with microbially induced calcium carbonate precipitation

1.E-04

University of Strathclyde Engineering

RWM: Rock fracture sealing in deposition holes, crack sealing in boreholes, concrete repair?

In-situ analysis techniques to understand the behaviour of waste and backfill materials in a GDF environment

Professor Thomas B. Scott^{1,2}

¹ Interface Analysis Centre, HH wills Physics Laboratory, University of Bristol, BS8 1TL, UK ² HH Wills Physics Laboratory, School of Physics, University of Bristol, Bristol, BS8 1TL, UK

Dr Macarena Leal Olloqui, Dimitris Samaras, Dr Haris Parasevoulakos

Studying Materials in a Geological Disposal Facility setting is challenging!

- Time (lots of it!)
- Conditions (which vary)

.....

- Radiation (which reduces)
- Microbes (good & bad!)

www.bristol.ac.uk/iac

Engineered Barrier System (EBS) concept

The concept for an **Engineered Barrier System** (EBS), comprises:

1. *Solid glass waste-form*: To prevent the dissolution of radioactive waste into groundwater.

2.Durable metal encasement: Prevents the contact of groundwater with the HAW.

3.Bentonite clay buffer/backfill: Delays the migration of radioactive substances by slowing down the movement of groundwater and blocking microbes.

4.Host rock: To slow down the migration of radioactive nuclides to the surface.

www.bristol.ac.uk/iac

Alternative Buffer Material (ABM) project

Schematic layout ABM experiment (test package 1)

Äspö Hard Rock Laboratory, Sweden

www.bristol.ac.uk/iac

Example - Sampling the FEBEX in situ tests

www.bristol.ac.uk/iac

Important observations for alteration

Inspection FEBEX and ABM samples

Sometimes no result is a good result!

- Sample BM-B-41-1 from the Febex experiment, displays a visual discolouration.
- Samples from ABM experiment, showed no appreciable differences detected.
- Also verified using advanced materials analysis techniques

www.bristol.ac.uk/iac

29

BRISTOL A multi-technique analysis approach

.....

.....

XRT

University of BRISTOL XRD and CEC results

BRISTOL Example – In situ analysis

Uranium and **Uranium Carbide** are fuel materials that will be emplaced in a UK GDF.

Should containment fail, both are **reactive materials** that can also be **leached** by contacting waters.

To study their GDF evolution you **must analyse them in situ!**

Data Collection

- 20 days after preparation
- 50 days after preparation
- 360 days after preparation

XRT Scans

- Low-resolution, high FOV (~30µm/pixel, ~1 h 30 mins/scan)
- High-resolution, low FOV (~2.8µm/pixel, ~20 hours/scan)

www.bristol.ac.uk/iac

BRISTOL In situ XRT analysis of U metal

- Both U metal and U carbide 'stick' samples have been placed in sealed X-ray transparent cells.
- Some are in water (different chemistries), some in Magnox sludge simulant (as shown).
- XRT analysis allows direct inspection of the samples without breaking containment.
- Doing so would disrupt the system and allow O₂ ingress.

Key findings

- First signs of corrosion
- Crater/blister type of morphology – No Layer
- No signs of corrosion across lower uranium
- No evidence of bubble formation in the sludge

www.bristol.ac.uk/iac

37

50 days

.....

360 days

BRISTOL High Magnification Scan – 360 days

Quantitative analysis – rate data

Time (Days)

University of BRISTOL Summary and Conclusions

- Analysis of long-duration test samples is incredibly valuable for providing credible evidence for GDF performance.
- In-situ analysis of materials is challenging but highly-important for facilitating time-resolved studies of materials.
- A **multi-technique approach** for research on GDF materials is a necessity.
- We have the experimental tools and methodologies ready for site specific studies to commence in the UK.

Acknowledgement

Dr Macarena Leal Olloqui, Dimitris Samaras, Dr Haris Parasevoulakos

We would like to thank Amec Foster Wheeler Ltd (now Jacobs) and University of Bristol for their support.

> IHA bristol.ac.uk

www.bristol.ac.uk/iac

Questions to the panel

lan Farnam University of Cambridge

Becky Lunn University of Strathclyde

Tom Scott University of Bristol

Please post any questions into the chat.

You can message the chair, Katherine Morris, directly if preferred