
Organic Fingerprinting of Groundwater 
to Determine Surface Water Origins
Professor Becky Lunn

Dr Mark Stillings, Prof Zoe Shipton , Dr Richard Lord, Dr Stella 
Pytharouli, Dr Marianna Kinali

Dr Sally Thompson (RWM) 



Aims
• Test monitoring systems, technologies or 

methods
• Collect monitoring data in order to identify 

baseline GW conditions and disturbing events.

LArge Scale Monitoring (LASMO)

http://www.grimsel.com/gts‐phase‐vi/lasmo/lasmo‐introduction

Groundwater 
Chemical background

Dissolved organics

Micro‐seismic
Monitoring



LArge Scale Monitoring (LASMO)
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GTS

1. Monitoring to characterize 
baseline

2. Surface water reservoir 
drained for maintenance –
conditions perturbed



1) Monitoring Background Groundwater chemistry 
2) Scrutinise and develop hydrogeological site 

investigation techniques.
3) Examine whether surface load changes (due to 

lake drainage – as a glacial analogue) affect 
groundwater flow and geochemistry.

Developed 2 new site investigation techniques:
• Organic fingerprinting
• Baseline (nano-) microseismic event detection to 

– map subsurface fractures
– Draw implications for glacial loading 

Strathclyde Contributions



Deriving a flow model for 
the GTS

Can we distinguish 
components from the 
different surface water 
origins at depth?

 Glacial meltwater
 Lake water
 Rainwater/snow



What can distinguish groundwater 
sources?

18O,  D, 

CFCs, 14C, 
85Kr, 3H 

Major and Trace 
Ions

Traditional methods:
GTS groundwater is 
meteoric and > 65 years old



What can distinguish groundwater 
sources?

18O,  D, 

CFCs, 14C, 
85Kr, 3H 

Major and Trace 
Ions

Biomarkers?

• Naturally Occurring
• Passive

• Spatial Discrimination
• Water soluble

• Detectable
• Long lasting

Traditional methods:
GTS groundwater is 
meteoric and > 65 years old



Concept – based on forensics

Sample Extraction Concentration Analysis

Analysis

a.
b. c.

a.
b.

a.



Detailed Organic Fingerprinting



GC x GC

http://www.sepsolve.com/overview‐of‐gcgc/



Sample locations



Organic Fingerprints
Groundwater

Esters

N‐alkanes



Lake Water

Organic Fingerprints

Esters

N‐alkanes



0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

a

b

c

LW

3a

3b

4a

4b

5a

5d

6a

6b

f

d

e

g

Compound abundance

G
ro
un

dw
at
er
 g
‐f

G
ro
un

dw
at
er
 a
‐c

Ephemeral 
streambed

Su
rf
ac
e 
so
ils

Lake water



Principal component analysis



GC x GC Determining infiltration

Soil

Lake

River

?



• Lake and soil sources are different in composition

• Clear lake component in 3 groundwater sites

• Groundwater derives from lake, and two soil types

• Neighbouring fractures that cross the same 
borehole are extremely poorly connected (if at all)

– first ever use of organic fingerprinting as a 
groundwater tracing technique

Implications for Groundwater 
Flow Model



£197k – RWM ‘Organic fingerprinting of 
groundwater to determine surface water 
origins’ (Jan 2020 - 2022)

Test site: Mont Terri, Switzerland

Exploring longevity, applicability to different clay sites, 
molecule decay etc.

Current Project:



• Manual method: A full working day to produce 
approx. 3-4% of full channel image

• Automatic Artificial Intelligence-based method: 
Around 20 mins to produce 100% of 8 layers

Advanced Image Processing Techniques

Develop similar AI-based inspection techniques for waste packages, cables etc?



Cable Management

Combines monitoring measurements, data driven 
models and physics-based cable aging models to 
provide an overall trended health index (HI)

Integration into engineering decision support 
systems and cable asset management strategies

20

Kinectrics

Diagnostic Life-time Asset Management Tools

RWM ‐ Public and operational assurance
Asset Management for Storage, Packaging, surface and subsurface GDF infrastructure?



Remotely deployable, combined monitoring & maintenance for concrete

Continuous monitoring to detect cracks, moisture ingress, chloride content etc

ANRC-27: Dr M Perry, Dr A Ward

Smart Cements for Crack / Leakage Detection

RWM – Smart non-invasive monitoring of cement-based assets?
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Crack sealing with microbially induced calcium carbonate 
precipitation

RWM: Rock fracture sealing in deposition holes, crack sealing in boreholes, concrete repair?

3 orders of magnitude 
reduction in fracture 
transmissivity



In-situ analysis techniques to understand the 
behaviour of waste and backfill materials in a 

GDF environment 
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Studying Materials in a 
Geological Disposal Facility 

setting is challenging!

www.bristol.ac.uk/iac 24

• Time      (lots of it!)
• Conditions (which vary)
• Radiation   (which reduces)
• Microbes    (good & bad!)



The concept for an Engineered Barrier 
System (EBS), comprises:

1. Solid glass waste-form: To prevent 
the dissolution of radioactive waste into 
groundwater.

2.Durable metal encasement: Prevents 
the contact of groundwater with the 
HAW.

3.Bentonite clay buffer/backfill: Delays 
the migration of radioactive substances 
by slowing down the movement of 
groundwater and blocking microbes.

4.Host rock: To slow down the migration 
of radioactive nuclides to the surface.

www.bristol.ac.uk/iac 25

1. Solid glass waste-form

2. Durable metal
waste encasement

3. Bentonite clay
buffer/backfill

4. Host Rock

Engineered Barrier System (EBS) concept



www.bristol.ac.uk/iac 26

FEBEX in situ test

Full-scale High Level Waste Engineered Barriers (FEBEX)

1. Granite host rock.
2. Heater.
3. Steel liner.
4. Compacted bentonite blocks.

Long-term experiments

Grimsol test 
site in 

Switzerland

100°C for 18 years
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Alternative Buffer Material (ABM) project

Schematic layout ABM experiment (test package 1)

Long-term experiments

Äspö Hard Rock Laboratory, Sweden

130°C for 6.5 years
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Example - Sampling the FEBEX in situ tests

Sample BM-B-41-1 Samples 
S-S-54-15-A/B/C/D/E

Sample M-S-48-1

A suite of incredibly important samples!
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Inspection FEBEX and ABM samples

Kunigel V1

MX-80

Deponit

Febex

BM-B-41-1 S-S-54-15-A/B/C/D/E

• Sample BM-B-41-1 
from the Febex
experiment, displays a 
visual discolouration.

• Samples from ABM 
experiment, showed 
no appreciable 
differences detected.

• Also verified using 
advanced materials 
analysis techniques

Important observations for alteration

Sometimes no result 
is a good result!



A multi-technique analysis approach

www.bristol.ac.uk/iac 30

X‐ray 
diffraction

X‐ray 
tomography

X‐ray 
Fluorescence

FTIR and 
Raman 

Cation 
Exchange 
Capacity

Secondary ion 
mass 

spectrometry

Optical and 
Electron 

microscopy 
(inc. EDX)

SAMPLE



Example - Febex Bentonite alteration

100°C for 18 years



XRT



(e)

XRD and CEC results
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Example – In situ analysis

• 20 days after preparation
• 50 days after preparation
• 360 days after preparation

XRT Scans
• Low-resolution, high 

FOV (~30µm/pixel, 
~1 h 30 mins/scan)

• High-resolution, 
low FOV

(~2.8µm/pixel, 
~20 hours/scan)

Data Collection

Uranium and Uranium Carbide are fuel 
materials that will be emplaced in a UK GDF.

Should containment fail, both are reactive materials 
that can also be leached by contacting waters. 

To study their GDF evolution you 
must analyse them in situ!
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In situ XRT analysis of U metal

• Both U metal and U carbide 
‘stick’ samples have been 
placed in sealed X-ray 
transparent cells.

• Some are in water (different 
chemistries), some in 
Magnox sludge simulant (as 
shown).

• XRT analysis allows direct 
inspection of the samples 
without breaking 
containment.

• Doing so would disrupt the 
system and allow O2 ingress.
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• First signs of corrosion

Key findings

• Crater/blister type of 
morphology – No Layer

• No signs of corrosion 
across lower uranium

• No evidence of bubble 
formation in the sludge

20 days in-situ….
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50 days 360 days

50 and 360 days in-situ….
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High Magnification Scan – 360 days
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 Image Segmentation

Analysis

 Phase Separation
 Volume Calculations
 Corrosion Rate/Percentage

y = 4.52ln(x) + 3.18
R² = 0.97
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R² = 0.993
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Quantitative analysis – rate data



Summary and Conclusions

• Analysis of long-duration test
samples is incredibly valuable for
providing credible evidence for GDF
performance.

• In-situ analysis of materials is
challenging but highly-important for
facilitating time-resolved studies of
materials.

• A multi-technique approach for
research on GDF materials is a
necessity.

• We have the experimental tools and
methodologies ready for site specific
studies to commence in the UK.
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